ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4900/5900: Special Topics — High-Performance Embedded Programming Fall 2021

Laboratory 3

(Due date: Oct. 11t)

OBJECTIVES

= Compile and execute multi-threaded C code in Ubuntu 12.04.4 using the Terasic DE2i-150 Development Kit.
= Learn multi-threading implementation using pthreads in C.

= Compare computation time of multi-threaded implementations using different number of threads.

REFERENCE MATERIAL
= Refer to the board website or the Tutorial: Embedded Intel for User Manuals and Guides.

= Refer to the Tutorial: High-Performance Embedded Programming with the Intel® Atom™ platform — Tutorial 3 and 4 for

associated examples.

ACTIVITIES

FIRST ACTIVITY: CENTERED MOVING AVERAGE (WINDOW SIZE = 7)
= Given an n-element vector a, where a(i) is an element of the vector (i = 0,1,....,n — 1), the elements of the 7-element
moving average f are given by:
f(i)(_a(i—3)+a(i—2)+a(i—1)+a(i)+a(i+1)+a(i+2)+a(i+3)
v' The moving average is usually a central moving average that7can be computed using data equally spaced on either side
of a central value (this needs the number of elements in the window to be odd).
v' Intheformula, i = 0,1,..n — 1. When the elements are not available (at the borders), we only use the available elements:

a@+ai+D+a@+2)+ali+3)

f(0) «

4
ai—D+a@+al+ 1D +al+2)+al+3)

fQ) « z

) ati—2)+a(i—1D+a@ +a+1)+a+2)+a(i+3)
f(2) « .
f(n—l)<—a(l_3)+a(L_Zi"'a(l_l)‘ﬂl(l)
f(n—Z)<—a(l—3)+a(l_2)+a§l_1)+a(l)+a(l+1)
f(n_g)(_a(i—3)+a(i—2)+a(i—1)+a(i)+a(i+1)+a(i+2)

6

= Fig. 1 depicts an example. The original data (102 data points) is plotted as a series of dots. The 7-element moving average
smooths short-term fluctuations and highlight longer-term trends.

250 T T LI T T T T T T T
Original Data
. Moving Average
200 - . 7
150 -]

100 -

0 i 1 1 1 1 1 e N T
0 10 20 30 40 50 60 70 80 90 100
Figure 1. Seven-element moving average

1 Instructor: Daniel Llamocca

https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=11&No=529
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=11&No=529
http://www.secs.oakland.edu/~llamocca/emb_intel.html
http://www.secs.oakland.edu/~llamocca/emb_intel.html

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4900/5900: Special Topics — High-Performance Embedded Programming

Fall 2021

INSTRUCTIONS

= Write a .c program that reads in the parameter nthreads, reads the input data set from a binary input file (.bif), computes

the 7-element centered moving average and displays the result.
v Your code should measure the computation time (only the actual computation portion) in us.

= Considerations:

v Input dataset: 100,000 elements of type int32. This is available in the provided mydata.bif file.
= You can use this code snippet to read data from a binary file (use typ=1 since each element is of type int32).

int read binfile (int *data, int Length, char *in file, int typ) {
// data: array where the data read from file is placed

// type: type 0: each element is unsigned 8-bit integer. > 'unsigned char'
// type 1: each element is a signed integer (32 bits) > 'int'
// Length: # of elements to read (if type =1 --> number of 32-bit words)
FILE *file i;
int 1i;
size t result, ELEM SIZE;
if (typ != 0 && typ != 1) { printf ("Wrong modifier (only 0, 1 accepted)\n"); return -1; }
file i = fopen(in file,"rb");
if (file i == NULL) { printf ("Error opening file!\n"); return -1; }
if (typ == 0) { // each element is an unsigned integer of 8 bits
unsigned char *IM;
IM = (unsigned char *) calloc (Length, sizeof (unsigned char));

ELEM SIZE = sizeof (unsigned char);
result = fread (IM, sizeof (unsigned char), Length, file i);

for (i = 0; 1 < Length; i++) datal[i] = (int) IMI[i];
free (IM); }
else { // if (typ == 1) // each element is a signed 32-bit integer
int *IM;
IM = (int *) calloc (Length, sizeof(int));

ELEM SIZE = sizeof (int);
result = fread (IM, sizeof(int), Length, file 1i);

for (i = 0; 1 < Length; i++) datal[i] = IMI[i];
free (IM); }

fclose (file 1i);

printf (" (read binfile) Input binary file '$s': # of elements read = $1d\n", in file, result);
printf (" (read binfile) Size of each element: %$1d bytes\n", ELEM SIZE);

return 0;

v’ Strategy for parallelization: Given nthreads threads, the index i represents each thread from 0 to nthreads-1.
= Each thread i is in charge of processing a slice of the input vector in order to generate a slice of the output vector.

= The thread i computes the slice of the output vector f with the following indices:
ixn (i+1)xn
From l J to [J -

nthreads. nthreads

o Note that nthreads € [1,n].

7000 T T T

6000

Orginal Data
Moving Average

5000

4000

Figure 2. Seven-element moving average for the 100,000-element input dataset.

2

Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4900/5900: Special Topics — High-Performance Embedded Programming Fall 2021

= Verification: Fig. 2 depicts the input dataset along with the 7-element moving average.
v' The dataset is relatively large, so to verify the correctness of your result, have your program print out the following

indices of output vector £
o £(0:19), £(1000:1019), £(99980:99999)

v Fig. 3 shows a screenshot of the execution in the Terminal with the three 20-element sets of values.

@ ™ @ daniel@daniel-Inspiron-1545: ~/Dropbox/mystuff/work_ubuntu/labs/lab3

daniel@daniel-Inspiron-1545:~/Dropbox/mystuff/work_ubuntu/labs/1lab3$./movavg pthreads 5
(read_binfile) Input binary file 'mydata.bif': # of elements read = 100000
(read_binfile) Size of each element: 4 bytes

Creating 5 Threads
® computes slice ® (indices: © to 19999)
computes slice 1 (indices: 20000 to 39999)
computes slice 2 (indices: 40000 to 59999)
computes slice 3 (indices: 60000 to 79999)
computes slice 4 (indices: 80000 to 99999)
218.7500 odata[10080] = 303.2857 odata[99980] 397.7143
273.6000 odata[1001] 281.2857 odata[99981] 406.1429
310.8333 odata[1882] 246.2857 odata[99982] 384.2857
329.2857 odata[1863] 246.7143 odata[99983] 485.2857
277.7143 odata[18684] 250.8571 odata[99984] 381.5714
244.8571 odata[16605] 281.2857 odata[99985] 320.4286
310.8571 odata[1006] 238.0000 odata[99986] 287.5714
311.0000 odata[1007] 264.0000 odata[99987] 245.7143
252.1429 odata[1068] 228.5714 odata[99988] 194.7143
220.1429 odata[10609] 267.5714 odata[99989] 179.5714
216.8571 odata[1010] 263.2857 odata[99990] 178.7143
210.7143 odata[1811] 249.8571 odata[99991] 181.0000
238.1429 odata[1812] 234.0000 odata[99992] 234.4286
235.8571 odata[1813] 254.7143 odata[99993] 262.2857
272.8571 odata[1014] 275.4286 odata[99994] 319.8571
300.0000 odata[1015] 317.5714 odata[99995] 374.8571
302.2857 odata[1016] 340.1429 odata[99996] 376.7143
252.2857 odata[1817] 319.1429 odata[99997] 371.5000
316.5714 odata[1018] 335.1429 odata[99998] 391.0000
335.0000 odata[1019] = 378.0000 odata[99999] = 377.2500
(write_ blnfllc) Output binary file 'mydata.bof': # of (int32) elements written = 100000
start: 310084 us
end: 312837 us
Elapsed time (only actual computation): 2753 us
daniel@daniel-Inspiron-1545:~/Dropbox/mystuff/work_ubuntu/labs/1lab35s I

Figure 3. Execution of 7-element moving average showing three 20-element sets of values (the computation time corresponds to an execution

on a Dell Inspiron laptop)

= Compile the code and execute the application on the DE2i-150 Board. Complete Table I (use an average of 10 executions in
order to get the computation time for each case).
v' Example: . /my_movavg 10
= It will compute the moving average of the input dataset using 10 threads.

TABLE . COMPUTATION TIME (US) VS. NUMBER OF THREADS

nthreads
1 2 3 4 5 6 7 8 9 10

Computation
Time (us)

3 Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4900/5900: Special Topics — High-Performance Embedded Programming Fall 2021

v/ Comment on your results in Table I. Is there an optimal number of threads? At what point increasing the number of
threads causes an increase in processing time?

= Take a screenshot of the software running in the Terminal for nthreads=5. It should show the computation time along with
the three 20-element sets of values for the output vector f (like in Fig. 3).

= Provided file: mydata.bif.

SUBMISSION
= Demonstration: In this Lab 3, the requested screenshot of the software routine running in the Terminal suffices.
v If you prefer, you can request a virtual session (Webex) with the instructor and demo it (using a camera).

= Submit to Moodle (an assignment will be created):
v" One .zip file
o 15t Activity: The .zip file must contain the source files (.c, .n, Makefile), and the requested screenshot.
v" The lab sheet (a PDF file) with the completed Table I and your comments

TA signature: Date:

4 Instructor: Daniel Llamocca

	Objectives
	Reference Material
	Activities
	First Activity: Centered Moving Average (Window Size = 7)

	Submission

